

include - Dynamic Module Importer

[image: Build Status]
 [https://travis-ci.org/maxfischer2781/include][image: Code Health]
 [https://landscape.io/github/maxfischer2781/include/master][image: Test Coverage]
 [https://codecov.io/gh/maxfischer2781/include][image: Documentation Status]
 [http://include.readthedocs.io/en/latest/?badge=latest]
Documentation Topics Overview:

	Public Interface

	Automatic Bootstrapping

	Module Index

The include library is built to use code from arbitrary sources in your application.
In contrast to eval, exec and other code execution, include creates fully featured modules.
This makes code viable for pickling, multiprocessing, IPC and more.

Using include is straight forward - you only need the top level functions of the module:

import include
my_config = include.path('/etc/sysconfig/app_conf.py')

All ugly bits are handled by include - once a module is imported, it works as normal.
Even in other processes, the import machinery is bootstrapped without manual intervention.

For all supported import methods, check out the public inteface of the include module.

Indices and tables

	Index

	Module Index

	Search Page

Documentation built from include 0.2.2 at Aug 02, 2018.

include package

	
include.disable(identifier, children_only=False)

	Disable an include type

	Parameters

	
	identifier – module or name of the include type

	children_only – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
include.enable(identifier, exclude_children=False)

	Enable a previously disabled include type

	Parameters

	
	identifier – module or name of the include type

	exclude_children – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
include.path(file_path)

	Include module code from a file identified by its path

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a file containing module code

	Returns

	the imported module

	Return type

	module

Comparable to execfile, but respects the rules and constraints of modules.
If invoked again with the same file_path, the same module is returned.

import include
my_config = include.path('/etc/sysconfig/app_conf.py')

	
include.source(source_code)

	Include module code directly from a string

	Parameters

	source_code (str [https://docs.python.org/3/library/stdtypes.html#str]) – source code of the module

	Returns

	the imported module

	Return type

	module

Comparable to exec in a separate globals namespace, but respects the rules and constraints of modules.
If invoked again with the same source_code, the same module is returned.

>>> import include
>>> my_module = include.source(
>>> """
... def foo():
... return {constant}
... """.format(constant=3))
>>> my_module.foo() == 3
True

Subpackages

	include.base package
	Submodules
	include.base.import_hook module

	include.encoded package
	Submodules
	include.encoded.import_hook module

	include.files package
	Submodules
	include.files.import_hook module

	include.mount package

Submodules

	include.inhibit module

include.base package

Base module for import hook modules

Each include type is backed by (at least) one import hook module.
This must implement the install() to explicitly enable the include type.
Importing the import hook module should be free of side-effects, allowing modification before installation.

Notably, imported modules should live in a separate packagae than the import hook module.
This separate package, preferably include.mount, is free to bootstrap the import hook module as needed.

	
include.base.IMPORT_PATH = 'include.mount.base'

	package name in which to include imported modules

	
include.base.install()

	Enable this type of include

Submodules

	include.base.import_hook module

include.base.import_hook module

	
class include.base.import_hook.BaseIncludeLoader(module_prefix)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Import hook to load Python modules from an arbitrary location

	Parameters

	module_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – prefix for modules to import

Base class for import hooks to non-standard code sources. Implements the
general structure for encoded sources: a module source translates to an
artificial module path of the form <module_prefix>.<encoded_name>. The
module_prefix identifies the code source type (and import hook) while the
encoded_name contains all required information to retrieve the code.

For example, a module_prefix of include.type.files could identify
a source file type, and an encoded_name of SLASHtmpSLASHfooDOTpy point
to the path /tmp/foo.py. The resulting module would appear as
include.type.files.SLASHtmpSLASHfooDOTpy.

Note that module_prefix must point to a valid package, not a module.
It will be actually imported by the regular import machinery, and can be
used to bootstrap hooks.

The encoded_name is a free form field. The base class provides means to
escape invalid and reserved symbols (/ and .), but subclasses are
free to use them if it is suitable for them. Hooks should use encoded_name
to store a URI (or similar) to retrieve source code. As per Python rules,
including a dot (.) in the encoded_name requires the hook to import
each portion separately.

	
find_module(fullname, path=None)

	Find the appropriate loader for module name

	Parameters

	
	fullname (str [https://docs.python.org/3/library/stdtypes.html#str]) – __name__ of the module to import

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – __path__ of the parent package already imported

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

	
module2uri(module_name)

	Convert an encoded module name to an unencoded source uri

	
module_prefix

	

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

include.encoded package

Load modules from encoded source code

This include type encodes raw source code as a module name.
The resulting module is self-contained:
it can be stored, loaded and transferred without the original source code.
Only the dependencies of the module (including include) must be satisfied.

	
include.encoded.install()

	

Submodules

	include.encoded.import_hook module

include.encoded.import_hook module

	
class include.encoded.import_hook.EncodedModuleLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

Load python modules from their encoded content

This import hook allows storing and using module content as a compressed
data blob.

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

	
module2uri(module_name)

	Convert an encoded module name to an unencoded source uri

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

include.files package

Load modules from files

	
include.files.install()

	

Submodules

	include.files.import_hook module

include.files.import_hook module

	
class include.files.import_hook.FilePathLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

Load python file from their path

This import hook allows using encoded paths as module names to load modules
directly from their file.

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

include.mount package

	
class include.mount.MountLoader(mount_prefix, module_prefix)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
find_module(name, path=None)

	

	
is_module(name)

	Test that name is a module name

	
is_mount(name)

	Test that name is a mount name

	
load_module(name)

	Load and return a module

	
mount2name(mount)

	Convert a mount name to a module name

	
name2mount(name)

	Convert a module name to a mount name

include.inhibit module

	
include.inhibit.DISABLED_TYPES = <include.inhibit.DisabledIncludeTypes for '', children ''>

	Default interface to disabled types, see DisabledIncludeTypes

	
exception include.inhibit.DisabledIncludeError

	Bases: exceptions.ImportError

An import operation failed due to its include type being disabled

	
class include.inhibit.DisabledIncludeTypes

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Interface for disabling include types

Meta-container to control disabled include types.
The methods disable() and enable() allow to control which include types can be used.

Disabled types cannot be used to import code, be it explicitly or implicitly via bootstrapping.
Once a type is disabled, attempts to import code with it raise DisabledIncludeError.

This is provided as a two-level filter:
each type can be disabled either for both the current and any child process, or only for child processes.
It is not possible to enable an include type for child processes but not the current process.
Note that child processes inherit disabled types only on startup.

	Note

	This is a singleton, as it controls interpreter state.

	
disable(identifier, children_only=False)

	Disable an include type

	Parameters

	
	identifier – module or name of the include type

	children_only – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type:

	module (include.files or include.mount.files)

	The base module implementing the include type.
These modules have a module.IMPORT_PATH attribute.

	implementation path ("include.files")

	Import path of the module implementing the include type.

	mount path ("include.mount.files")

	Mount path of the module implementing the include type.

	short path ("files")

	Relative path of the module implementing the include type.

	
enable(identifier, exclude_children=False)

	Enable a previously disabled include type

	Parameters

	
	identifier – module or name of the include type

	exclude_children – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
environment_key = 'PY_INCLUDE_DISABLE'

	Key of the environment storing include types disabled for child processes

	
class include.inhibit.DisabledTypeLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

	
load_module(name)

	Load and return a module

If the module is already loaded, the existing module is returned.
Otherwise, raises DisabledIncludeError.

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

Always raises DisabledIncludeError.

Automatic Bootstrapping

Modules imported by include have an automatic bootstrapping mechanism:
when imported in another process, the required import hook is automatically loaded.
This allows un/pickling and transferring objects, without explicitly preparing include in the receiver.
The only restriction is that include must be importable before any module code is run.

Disabling Bootstrap Hooks

At times, bootstrapping arbitrary include types is not desired.
For example, a public web service may desire to run existing, local configuration code files during startup only.
As a simple remedy, individual include types can be disabled.

To disable include types, both a code and environment interface are available:

	Environment Variable PY_INCLUDE_DISABLE

	A list of include types to disable.
Types are indicated by their module name, such as files for the include.files type.
Multiple types may be delimited by commas, with optional whitespace.
For example, the list files, encoded disables imports from files and encoded source.

	Code Interface include.disable() and include.enable()

	Functions to disable or enable individual include types.
Types may be indicated by a variety of identifiers.
See disable() for details.

Bootstrapping Mechanism

Each include corresponds to an include type implementation and namespace.
The former provides the actual import machinery, such as hooks and name translation.
The later is a namespace module, into which all modules imported by include are inserted.

For each include type, a separate namespace is used.
The namespace itself ensures that its include type is installed.
Thus, re-importing a module in a separate process first loads its namespace and thus its import machinery.

For example, a file based import is implemented in include.files, and the default namespace is include.mount.
When importing a file foo, it is inserted as include.mount.files.foo.
Re-importing include.mount.files.foo first imports include.mount.files, which in turn installs include.files.

include

	include package
	Subpackages
	include.base package
	Submodules

	include.encoded package
	Submodules

	include.files package
	Submodules

	include.mount package

	Submodules
	include.inhibit module

include package

	
include.disable(identifier, children_only=False)

	Disable an include type

	Parameters

	
	identifier – module or name of the include type

	children_only – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
include.enable(identifier, exclude_children=False)

	Enable a previously disabled include type

	Parameters

	
	identifier – module or name of the include type

	exclude_children – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
include.path(file_path)

	Include module code from a file identified by its path

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a file containing module code

	Returns

	the imported module

	Return type

	module

Comparable to execfile, but respects the rules and constraints of modules.
If invoked again with the same file_path, the same module is returned.

import include
my_config = include.path('/etc/sysconfig/app_conf.py')

	
include.source(source_code)

	Include module code directly from a string

	Parameters

	source_code (str [https://docs.python.org/3/library/stdtypes.html#str]) – source code of the module

	Returns

	the imported module

	Return type

	module

Comparable to exec in a separate globals namespace, but respects the rules and constraints of modules.
If invoked again with the same source_code, the same module is returned.

>>> import include
>>> my_module = include.source(
>>> """
... def foo():
... return {constant}
... """.format(constant=3))
>>> my_module.foo() == 3
True

Subpackages

	include.base package
	Submodules
	include.base.import_hook module

	include.encoded package
	Submodules
	include.encoded.import_hook module

	include.files package
	Submodules
	include.files.import_hook module

	include.mount package

Submodules

	include.inhibit module

include.base package

Base module for import hook modules

Each include type is backed by (at least) one import hook module.
This must implement the install() to explicitly enable the include type.
Importing the import hook module should be free of side-effects, allowing modification before installation.

Notably, imported modules should live in a separate packagae than the import hook module.
This separate package, preferably include.mount, is free to bootstrap the import hook module as needed.

	
include.base.IMPORT_PATH = 'include.mount.base'

	package name in which to include imported modules

	
include.base.install()

	Enable this type of include

Submodules

	include.base.import_hook module

include.base.import_hook module

	
class include.base.import_hook.BaseIncludeLoader(module_prefix)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Import hook to load Python modules from an arbitrary location

	Parameters

	module_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – prefix for modules to import

Base class for import hooks to non-standard code sources. Implements the
general structure for encoded sources: a module source translates to an
artificial module path of the form <module_prefix>.<encoded_name>. The
module_prefix identifies the code source type (and import hook) while the
encoded_name contains all required information to retrieve the code.

For example, a module_prefix of include.type.files could identify
a source file type, and an encoded_name of SLASHtmpSLASHfooDOTpy point
to the path /tmp/foo.py. The resulting module would appear as
include.type.files.SLASHtmpSLASHfooDOTpy.

Note that module_prefix must point to a valid package, not a module.
It will be actually imported by the regular import machinery, and can be
used to bootstrap hooks.

The encoded_name is a free form field. The base class provides means to
escape invalid and reserved symbols (/ and .), but subclasses are
free to use them if it is suitable for them. Hooks should use encoded_name
to store a URI (or similar) to retrieve source code. As per Python rules,
including a dot (.) in the encoded_name requires the hook to import
each portion separately.

	
find_module(fullname, path=None)

	Find the appropriate loader for module name

	Parameters

	
	fullname (str [https://docs.python.org/3/library/stdtypes.html#str]) – __name__ of the module to import

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – __path__ of the parent package already imported

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

	
module2uri(module_name)

	Convert an encoded module name to an unencoded source uri

	
module_prefix

	

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

include.encoded package

Load modules from encoded source code

This include type encodes raw source code as a module name.
The resulting module is self-contained:
it can be stored, loaded and transferred without the original source code.
Only the dependencies of the module (including include) must be satisfied.

	
include.encoded.install()

	

Submodules

	include.encoded.import_hook module

include.encoded.import_hook module

	
class include.encoded.import_hook.EncodedModuleLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

Load python modules from their encoded content

This import hook allows storing and using module content as a compressed
data blob.

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

	
module2uri(module_name)

	Convert an encoded module name to an unencoded source uri

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

include.files package

Load modules from files

	
include.files.install()

	

Submodules

	include.files.import_hook module

include.files.import_hook module

	
class include.files.import_hook.FilePathLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

Load python file from their path

This import hook allows using encoded paths as module names to load modules
directly from their file.

	
load_module(name)

	Load and return a module

Always returns the corresponding module. If the module is already
loaded, the existing module is returned.

include.mount package

	
class include.mount.MountLoader(mount_prefix, module_prefix)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
find_module(name, path=None)

	

	
is_module(name)

	Test that name is a module name

	
is_mount(name)

	Test that name is a mount name

	
load_module(name)

	Load and return a module

	
mount2name(mount)

	Convert a mount name to a module name

	
name2mount(name)

	Convert a module name to a mount name

include.inhibit module

	
include.inhibit.DISABLED_TYPES = <include.inhibit.DisabledIncludeTypes for '', children ''>

	Default interface to disabled types, see DisabledIncludeTypes

	
exception include.inhibit.DisabledIncludeError

	Bases: exceptions.ImportError

An import operation failed due to its include type being disabled

	
class include.inhibit.DisabledIncludeTypes

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Interface for disabling include types

Meta-container to control disabled include types.
The methods disable() and enable() allow to control which include types can be used.

Disabled types cannot be used to import code, be it explicitly or implicitly via bootstrapping.
Once a type is disabled, attempts to import code with it raise DisabledIncludeError.

This is provided as a two-level filter:
each type can be disabled either for both the current and any child process, or only for child processes.
It is not possible to enable an include type for child processes but not the current process.
Note that child processes inherit disabled types only on startup.

	Note

	This is a singleton, as it controls interpreter state.

	
disable(identifier, children_only=False)

	Disable an include type

	Parameters

	
	identifier – module or name of the include type

	children_only – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type:

	module (include.files or include.mount.files)

	The base module implementing the include type.
These modules have a module.IMPORT_PATH attribute.

	implementation path ("include.files")

	Import path of the module implementing the include type.

	mount path ("include.mount.files")

	Mount path of the module implementing the include type.

	short path ("files")

	Relative path of the module implementing the include type.

	
enable(identifier, exclude_children=False)

	Enable a previously disabled include type

	Parameters

	
	identifier – module or name of the include type

	exclude_children – disable the include type only for child processes, not the current process

The identifier can be specified in multiple ways to disable an include type.
See disable() for details.

	
environment_key = 'PY_INCLUDE_DISABLE'

	Key of the environment storing include types disabled for child processes

	
class include.inhibit.DisabledTypeLoader(module_prefix)

	Bases: include.base.import_hook.BaseIncludeLoader

	
load_module(name)

	Load and return a module

If the module is already loaded, the existing module is returned.
Otherwise, raises DisabledIncludeError.

	
uri2module(uri)

	Convert an unencoded source uri to an encoded module name

Always raises DisabledIncludeError.

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 include	

 	
 	
 include.base	

 	
 	
 include.base.import_hook	

 	
 	
 include.encoded	

 	
 	
 include.encoded.import_hook	

 	
 	
 include.files	

 	
 	
 include.files.import_hook	

 	
 	
 include.inhibit	

 	
 	
 include.mount	

Index

 B
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | S
 | U

B

 	
 	BaseIncludeLoader (class in include.base.import_hook)

D

 	
 	disable() (in module include)

 	(include.inhibit.DisabledIncludeTypes method)

 	DISABLED_TYPES (in module include.inhibit)

 	
 	DisabledIncludeError

 	DisabledIncludeTypes (class in include.inhibit)

 	DisabledTypeLoader (class in include.inhibit)

E

 	
 	enable() (in module include)

 	(include.inhibit.DisabledIncludeTypes method)

 	EncodedModuleLoader (class in include.encoded.import_hook)

 	
 	
 environment variable

 	PY_INCLUDE_DISABLE

 	environment_key (include.inhibit.DisabledIncludeTypes attribute)

F

 	
 	FilePathLoader (class in include.files.import_hook)

 	
 	find_module() (include.base.import_hook.BaseIncludeLoader method)

 	(include.mount.MountLoader method)

I

 	
 	IMPORT_PATH (in module include.base)

 	include (module)

 	include.base (module)

 	include.base.import_hook (module)

 	include.encoded (module)

 	include.encoded.import_hook (module)

 	include.files (module)

 	
 	include.files.import_hook (module)

 	include.inhibit (module)

 	include.mount (module)

 	install() (in module include.base)

 	(in module include.encoded)

 	(in module include.files)

 	is_module() (include.mount.MountLoader method)

 	is_mount() (include.mount.MountLoader method)

L

 	
 	load_module() (include.base.import_hook.BaseIncludeLoader method)

 	(include.encoded.import_hook.EncodedModuleLoader method)

 	(include.files.import_hook.FilePathLoader method)

 	(include.inhibit.DisabledTypeLoader method)

 	(include.mount.MountLoader method)

M

 	
 	module2uri() (include.base.import_hook.BaseIncludeLoader method)

 	(include.encoded.import_hook.EncodedModuleLoader method)

 	
 	module_prefix (include.base.import_hook.BaseIncludeLoader attribute)

 	mount2name() (include.mount.MountLoader method)

 	MountLoader (class in include.mount)

N

 	
 	name2mount() (include.mount.MountLoader method)

P

 	
 	path() (in module include)

 	
 	PY_INCLUDE_DISABLE

S

 	
 	source() (in module include)

U

 	
 	uri2module() (include.base.import_hook.BaseIncludeLoader method)

 	(include.encoded.import_hook.EncodedModuleLoader method)

 	(include.inhibit.DisabledTypeLoader method)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 include - Dynamic Module Importer

 		
 Public Interface

 		
 Subpackages

 		
 include.base package

 		
 include.encoded package

 		
 include.files package

 		
 include.mount package

 		
 Submodules

 		
 include.inhibit module

 		
 Automatic Bootstrapping

 		
 Disabling Bootstrap Hooks

 		
 Bootstrapping Mechanism

 		
 Module Index

 		
 include package

 		
 Subpackages

 		
 Submodules

